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A method is posed for separating the noise emitted by an aerodynamic source from

propagation effects using spectral decomposition. This technique is applied to the

power spectra of a fan measured at several rotational speeds. Although it has been

conceived for rotating sources as turbomachinery rotors, the method may be easily

isolated airfoils.

Based on the similarity theory, a clear description of the structure of the power

spectrum of the received noise is given and the effect of rotational speed variations is

considered as a means to obtain a data set suitable to perform the spectral

decomposition. The problem is analyzed in order to clarify possibilities and limitations

of the method and then an algorithm is presented which is based on the solution of the

derived equations. Particular care is devoted to both the numerical details and the

operative aspects.

The validation of the algorithm is performed by means of numerically generated

input data. Next, in order to verify the ability of the method in separating scattered from

emitted sound, an automotive cooling fan has been tested in the DIMSET hemi-anechoic

room in a free-field configuration and with a shielded microphone. These two

apparently distinct spectra collapse to within less than 2 dB after the spectral

decomposition has been performed. The tests prove the ability of the method despite

the modest quantity of input data.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The aerodynamic noise generated by the interaction of solid bodies with a fluid flow usually results from the
composition of two distinct phenomena: the generation mechanism, which depends on the flow velocity, and the
propagation effects, which depend on both the geometry and the acoustic properties of the surrounding environment.
For low-speed fans, some typical instances are the reorganization of the acoustic waves taking place when a fan is inserted
inside a duct and the reflection, the scattering and the diffraction due to solid bodies within the surrounding environment.
Often, the propagation effects are considered extraneous and one is interested in obtaining their measured acoustic
pressure contribution. In other situations eliminating the propagation effects allows to study the noise generation
mechanism or to determine the acoustic signature.
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Nomenclature

a0 speed of sound
amn element of the coefficient matrix of Eq. (31)
Aln element of the coefficient matrix of Eq. (34)
bi,k weighting coefficient in Eqs. (26) and (30)
bm element of the known vector in Eq. (31)
Bl element of the known vector in Eq. (34)
ci,k weighting coefficient in Eqs. (26) and (30)
C, C1, C2, C3 constants in Eqs. (11–17) and (21)
D tip diameter of the rotor
D directivity function
e error
E norm of the error
f frequency
F source spectral distribution function
I non-dimensional function in Eq. (1)
g non-dimensional function of Re

G propagation function
He Helmholtz number
K function in Eqs. (16) and (17), K=const in

present work
M number of rotational speeds
Ma Mach number at the rotor tip
N number of discrete frequencies, number of

equations and number of unknowns
n rotational speed (rev/min)
OASPL overall SPL, 20 mPa
p acoustic pressure
p0 ambient static pressure
pout static pressure at the fan discharge
pref reference acoustic pressure, 20 mPa
Q volume flow rate
r distance from the rotor center
Re Reynolds number at the rotor tip
SPL sound pressure level, 20 mPa
Spp power spectral density of the acoustic pressure
Srandom numerically generated random error
St Strouhal number based on the rotational

frequency
Ti,k right-hand side term in Eq. (29)
xn element of the solution vector of Eq. (33)
xn
n best approximation of xn

yn element of the approximate solution vector of
Eq. (33)

Greek letters

a Mach number exponent in Eq. (9)
b Reynolds number exponent in Eq. (9)
g parameter related to the ‘‘frequency period’’ in

Eq. (40)
G level of the function G

G average value of G
Df frequency resolution
DSt Strouhal number resolution
DO rotational speed resolution
Y inclination angle
l wavelength
n kinematic viscosity
r0 ambient air density
j =8Q/pOD3, flow coefficient
F level of the function F

c =8(pout�p0)/r0(OD)2, pressure coefficient
O rotational speed (rad/s)

Subscripts

an related to SPL, F, G resulting from analytical
expressions

comp related to SPL, F, G resulting from the spectral
decomposition

eq related to the equations
ff related to free-field conditions and to mea-

surements in the free-field configuration
i related to the ith value of f

I value of i in the constant St interpolation
k related to the kth value of O
m related to the generic equation
max maximum value in the St range
meas related to measured SPL power spectra
min minimum value in the St range
n related to the generic unknown in Eq. (31)
prop related to the presence of propagation effects
real related to realistic signals
sh related to measurements with shielded micro-

phone
un related to the unknowns
a related to F and G values obtained with a

generic a value
0 related to the ambient conditions and to a=0
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To this regard, the so-called spectral decomposition is a typical instance: the flow velocity is varied under kinematic
similarity conditions so that the generation mechanism changes its time scale without affecting the time scale of the
propagation mechanism. The comparison of the SPL power spectra measured at different speeds should allow to separate
the two effects, but this operation requires the knowledge of the basic analytical structure of the received noise and,
obviously, the availability of a suitable algorithm.

The spectral decomposition has been first employed by Weidemann [1] and Neise and Barsikow [2] but it has been
extensively used and deepened by a group of researchers at the Pennsylvania State University (Mongeau et al. [3,4], Bent
and McLaughlin [5], and Tetu et al. [6]), by Mongeau and Quinlan [7], and by Stephens and Morris [8]. All of the latter
authors succeeded in employing the spectral decomposition for characterizing the sound generation properties of axial and
centrifugal turbomachines. In Refs. [5,8,9] some practical and theoretical aspects of the employed methods are treated and
different algorithms are suggested together with some enhancements to them. Nevertheless the general properties of the
problem have not been thoroughly treated and limited information about the developed algorithm has been provided. The
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main reason for this is that the above mentioned works were aimed at studying a specific physical phenomenon rather
than at analyzing a specific method. The main aim of present work is providing a deep description of the developed
algorithm and related problems.

An important aspect is the fact that, due to the properties of the physical phenomenon, the resulting mathematical
problem is ill-posed and underdetermined. This complicates the development of a suitable algorithm, from both the
theoretical and the numerical points of view. Even an effective algorithm cannot change the nature of a phenomenon and
thus the underdeterminacy remains and the obtained solution is just a mere mathematical one. In order to obtain the
actual solution further physical information is required. This aspect goes beyond the main purpose of the present work
and, although some related considerations of general usefulness are reported, it is not thoroughly treated in the following.

The spectral decomposition method will be treated with reference to turbomachinery rotors, in order to describe the
basic theory and to study the developed algorithm. However, no specific phenomenon is studied and, if the basic
assumptions hold, the application to the aerodynamic noise generated by non-rotating sources is straightforward.
2. Theoretical background

2.1. Acoustic similarity for turbomachinery rotors

Let us consider a fan rotor radiating aerodynamic noise and a receiver located in the acoustic far field at a distance r

from the rotor center. Assuming that the rotational speed O is sufficiently low for the flow to be considered incompressible,
based on the similarity theory, see for instance Blake [10], a quite general expression of the power spectral density Spp of
the received acoustic pressure p is given by

Sppðf ,O,D,r,Y,jÞ ¼ r0
2O3D4 1

ðr=DÞ2
IðSt,He,Re,r=d,Y,jÞDðYÞ (1)

where f is the frequency, r0 is the air density, D is the tip diameter of the rotor, and DðHÞ is the directivity function,
dependent on the inclination angle Y. I is a non-dimensional function of the following non-dimensional parameters:

Strouhal number St¼
2pf

O
(2)

Helmholtz number He¼
fD

a0
(3)

Reynolds number Re¼
OD2

2n (4)

flow coefficient j¼ 8Q

pOD3
(5)

where a0 is the speed of sound, n is the kinematic viscosity, and Q is the volume flow rate. Note that the blade tip Mach
number may be expressed as

Ma¼
OD

2a0
¼ pHe

St
(6)

All quantities are expressed in SI units. In all the equations O will be expressed in rad/s and only in the practical
examples the rotational speed n=60O/2p, expressed in rev/min, will be used. Spp is strictly linked to the sound pressure
level in the frequency band f�Df/2, f+Df/2:

SPLðf ,O,D,r,Y,jÞ ¼ 10log10

R f þDf=2
f�Df=2 Sppðf ,O,D,r,Y,jÞdf

p2
ref

(7)

with pref=20 mPa. When considering a narrow band spectrum, Df is small and Eq. (7) may be approximated as

SPLðf ,O,D,r,Y,jÞffi10log10
Sppðf ,O,D,r,Y,jÞDf

p2
ref

(8)

The function I has often a relatively simple structure. For instance, in a study of the noise generated by centrifugal
turbomachines Neise and Barsikow [2] found that Eq. (1) may be simplified to a form equivalent to

Sppðf ,O,D,r,Y,jÞ ¼
r2

0O
3D6

r2
MaaReb F2ðSt,jÞG2 He,

r

D
,Y

� �
DðYÞ (9)
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that is

I St,He,Re,
r

D
,Y,j

� �
¼MaaReb F2ðSt,jÞG2 He,

r

D
,Y

� �
DðYÞ

F(St,j) is a non-dimensional source spectral distribution function which depends on the pressure and velocity
fluctuations within the flow region. It is independent of the propagation effects which are included in the group
MaaG2(He,r/D,Y) DðYÞ. G(He,r/D,Y) is the non-dimensional acoustic frequency response function (in the following the
‘‘propagation function’’) which depends on the geometry and on the acoustic properties of the whole system. The term Maa

is related to the radiation efficiency and a depends on both the active noise generation mechanism and the acoustic
compactness of the source. The structure of Eq. (9) may be obtained solving the Helmholtz equation by means of the
Green’s function method thus allowing to identify the different contributions to the propagation effects (basically radiation
efficiency, near field effects and boundary conditions). These aspects are deepened in Mongeau et al. [4], Stephens and
Morris [8], and Blake [10].

Different kinds of noise generation mechanisms scaling with different powers of Ma may be simultaneously present
resulting in a=a(St), Bent and McLaughlin [5], Stephens and Morris [8], Quinlan and Krane [12]. This is explicitly taken into
account by the formulation described in Ref. [8]. For the sake of simplicity, in the present work a is considered to be
constant, but, as shown hereinafter, the extension to the case a=a(St) is straightforward.

Other difficulties may stem from the structure of the noise generated by a single mechanism. As an example, for the
trailing edge noise generated by axial flow fans and isolated airfoils, Blake [10] and Brooks et al. [11] suggested a more
complex structure of I which may be rearranged to yield IðSt,He,Re,jÞ ¼Mag2ðReÞF2½StgðReÞ,j�G2ðHeÞDðYÞ. In such a case
I could not be split in a part dependent on St multiplied by a part dependent on He and the application of the present
theory would be badly affected. Fortunately, in turbomachines the influence of Re on the generated noise is often weak and
thus Eq. (9) applies with b=0. This assumption has been confirmed or directly employed by Neise and Barsikow [2],
Mongeau et al. [3], Bent and McLaughlin [5], and Stephens and Morris [8] and allows to separate the effects of St and He.
Thus, if b=0, substituting Eqs. (6) and (9) in Eq. (8) yields

SPLðf ,O,D,r,Y,jÞ ¼ 10log10

r2
0Df

r2p2
ref

DðYÞ

" #
þ10log10ðO

3D6Þþ10log10 Maa

þ20log10 FðSt,jÞþ20log10GðHe,r=D,YÞ (10)

If the receiver position is fixed, i.e. both r and Y are constant, Eq. (10) may be further rearranged in any of the following forms:

SPLðf ,O,D,jÞ ¼ 10log10ðO
3þaD6þaÞþFðSt,jÞþGðHeÞþC1ðaÞ (11)

SPLðf ,O,D,jÞ ¼ 10log10ðO
3D6Þþ½FðSt,jÞ�10log10�þ½GðHeÞþ10log10Hea�þC2ðaÞ (12)

where F=20 log10 F, G=20 log10 G, C1ðaÞ ¼ 10log10½r2
0Df DðYÞ=2aaa0r2p2

ref �and C2ðaÞ ¼ 10log10½par2
0Df=DðYÞ=r2p2

ref �. For an ideal
open rotor (i.e. a point source) operating in free-field conditions (i.e. G�0) Spp depends on f through St only and, if a=const, the
frequency integration of Eq. (9) yields the following expression of the overall SPL:

OASPLðO,D,jÞ ¼ 10log10

R1
0 Sppðf Þdf

p2
ref

¼ C3ðjÞþ10log10ðO
4þaD6þaÞ (13)

with

C3ðjÞ ¼ 10log10

r2
0

2apr2aa0p2
ref

DðYÞ

" #
þ10log10

Z þ1
0

F2ðSt,jÞdSt

Eqs. (11) and (13) provide the low Mach number dependence of SPL and OASPL on O under kinematic similarity conditions. Eqs.
(11) and (12) are the base of the present work and may be rewritten in the following forms:

FðSt,jÞþGðHeÞ ¼ SPLðf ,O,D,jÞ�10log10ðO
3þaD6þaÞ�C1ðaÞ (14)

FðSt,jÞþGðHeÞ ¼ SPLðf ,O,D,jÞ�10log10ðO
3D6Þþ10log10Sta�10log10Hea�C2ðaÞ (15)

On the left hand sides of Eqs. (14) and (15) there are the unknown functions F and G, while on the right hand sides only
known quantities are present. Eq. (14) implies that, if the propagation effects included in G are negligible, the SPL spectra
generated by a rotor of fixed D and rotating at variable O, should collapse on a single curve when scaled with 10 log10 O3 +a

and plotted versus St. Together with the scaling of the OASPL, Eq. (13), this may help find the actual value of a. Given a set
of experimental data, the spectral decomposition consists in separating F and G, provided that the structure given by
Eq. (10) is respected; this should be verified. Unfortunately this is not sufficient for the present method to work properly
since a number of practical and theoretical difficulties remain which result in an ill-posed mathematical problem. Since
multiple solutions are admitted a further deepening is necessary:
(1)
 Once any pair of functions F (St,j) and G (He) satisfying either of Eq. (14) or (15) has been found, it is immediate to
demonstrate that the pair of functions F0(St,j)=F(St,j)+K and G0(He)=G(He)�K also satisfies Eq. (15). In the general
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case, for instance if a=a(St), K is a function of St resulting in a wide variety of solutions. If, as in the present case, one is
concerned with a single generation mechanism for which a=const, then K may be regarded as a constant linked to the
absolute levels of F and G. These levels are undetermined and only the relative trends of F and G may be determined.
Although this results in an underdetermined system of equations, convergence may be reached when employing an
iterative method of solution but the resulting absolute levels of F(St,j) and G(He) depend on the employed algorithm.
(2)
 Even in case a=const, the a value is not unique: any a may be imposed in Eqs. (14) and (15) and for each a a different
solution may be found. If the pair F0(St,j) and G0(He) satisfies Eq. (15) with a=0, i.e. if SPL(f, O, D,
j)�10 log10(O3D6)�C2(0)=F0(St,j)+G0(He), then the pair:

FaðSt,jÞ ¼F0ðSt,jÞþ10log10 StaþK (16)

GaðHeÞ ¼G0ðHeÞ�10log10Heaþ½C2ð0Þ�C2ðaÞ��K (17)

also satisfies Eq. (15) for any value of a (and obviously of K). This holds even in case a=a(St). It may be easily
demonstrated by means of the formal substitution G=G(He,St) in place of G=G(He) in Eq. (17), thus resulting in the
term 10 log10 Hea(St) in place of the term 10 log10 Hea. This last possibility will not be considered in the present work.
It has been proven that if the structure of Eq. (9) applies to the experimental data and if a=const, any a and K may be
imposed and N

2 solutions are possible. But, above all, the terms K, Sta, and Hea in Eqs. (16) and (17) demonstrate that
K and a influence the radiated acoustic power, Eq. (13), and that, as shown by Bent and McLaughlin [5], a influences the
mean slope of both F and G. Together with the scaling of the spectra, these considerations provide a physical ground for
choosing both K and a: for instance any information on the high f asymptotic behavior of F (see for instance Blake [10] or
Chase [13]) or of G may be of help. The application of these criteria is not restricted to low-speed fans but extends to all
those phenomena to which the described theory applies. It is also clear that, no matter the value assigned to a prior to the
spectral decomposition, once the latter has been performed, the resulting functions F and G may be easily modified
according to Eqs. (16) and (17). Thus it is possible to comply with any K and a without performing any new spectral
decomposition. This holds even in case that a=a(St). However, the method cannot determine K and a since their
indeterminacy is intrinsic to the physical problem and their estimation requires further knowledge about the properties of
the source (i.e. the Mach number dependence of the noise generation mechanism) and of the propagation environment.
Bent and McLaughlin [5] found K and a by means of an independent experimental evaluation of G: they considered it as an
acoustic transfer function independent of the aerodynamic source and placed a loudspeaker of known properties at the
impeller discharge. By means of a series of measurements they could evaluate the acoustic transfer function. Comparing it
with the function G resulting from the spectral decomposition they estimated both K and a. Unfortunately, depending on
the frequency range, different a values resulted and this outcome was attributed to inaccuracies in the measurements at
low f or to variable scaling of the acoustic pressure with O. These results prove that the indeterminacy of K and a is an
intrinsic feature of the physical problem and is independent of the algorithm employed to perform the spectral
decomposition. Hence, their determination requires information about the involved phenomena. See Tetu et al. [6] and
Quinlan and Krane [12] for further considerations about this point and Blake [10] for a general exposition of the properties
of the noise mechanisms.

Although the theory has been developed for a rotating source, if the basic assumptions hold, it may be also applied to
the aerodynamic noise generated in absence of rotation. This only requires substituting the specific reference velocity to
the product OD in all the equations.

2.2. Brief description of the existing algorithms

The present study provides an extension of the works presented in [3–5], thus it is worthy to clarify that F and G equal
the quantities 20 log10 F and 20 log10 G employed in Refs. [3–5], respectively, and that in the present paper St is based on
the rotational frequency O/2p while in Refs. [3–5] it is based on the blade passing frequency.

Mongeau et al. [3,4] studied the noise generated by a centrifugal pump by means of a method based on seeking G(He)
first and then calculating F(St,j) as the difference between the scaled SPL and G. The entire experimental data set
SPLi,k=SPL(fi, Ok) is scaled with 10 log10 O3 and then reorganized in subsets corresponding to a fixed value of St. Plotting
these subsets against He provides a number of curves which represent shifted pieces of the function G(He). They should
superpose when shifted of a suitable value which is function of St and equals the increment of F(St,j) between the
corresponding St values. Unfortunately, the curves cannot perfectly superpose due to experimental errors and spurious
phenomena thus causing practical complications. The authors suggest either a manual or an automated shifting of the
curves.

Zhang et al. [9] studied the noise generated by a turbulent jet at variable Reynolds number. In this case there are three
free parameters (St, He, Re) instead of two (St, He) and the reorganization of the experimental data set results in constant He

surfaces instead of constant St curves. G equals the shift of the constant He surfaces which yields their best superposition.
In order to determine such a shift the authors employ a least squares method based on an ‘‘ensemble average of all data
available’’, but no further details are provided.
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The above described methods are both based on a reorganization of the data set allowing to plot them as functions of
non-dimensional variables and then on the shift of the resulting curves or surfaces. Automating the shifting procedure is a
complicated numerical problem since both the frequency spacing and the overlapping He range of the curves depend on St.
This aspect and the related problems will be faced hereinafter.

An alternative approach has been suggested by Stephens and Morris [8]. Their algorithm is based on an iterative
smoothing of the non-dimensional SPL curves in the Strouhal number domain, so as to eliminate the propagation function.
The method aims at ‘‘determining the small-scales features of the propagation function’’ and less attention is devoted to
the ‘‘large-scale trends’’. Hence, this approach has not been followed in the present work.

3. The present method

3.1. The system of equations

The present algorithm has been developed for analyzing usual SPL power spectra for which the frequency spacing Df

and the frequency range f1–fN are fixed and independent of O, while the rotational speed spacing DO may be chosen rather
freely, usually DO=const. Thus,

fi ¼ iDf , i¼ 1,N (18)

Ok ¼O1þðk�1ÞDO, k¼ 1,M (19)

This results in N evenly spaced values Hei and N�M values Sti,k, with spacing DStk function of Ok: DStk ¼ 2pDf=Ok.
In principle the unknowns are N�M values Fi,k and N�M values Gi,k, but G is function of He only and He is independent of
O. Therefore,

Gi,k �Gi, i¼ 1,N (20)

reducing the number of unknowns to N(M+1). Eq. (14) yields M�N independent relations:

GiþFi,k ¼ SPLi,k�10log10O
3þa
k �C (21)

with C=C1(a)+10 log10 D6 +a. A constant a value has to be assigned prior to the spectral decomposition, but then a new a
may be applied to the obtained trends of F and G. A further relation is needed which represents the property of F of being
function of St only. This relation should link values of F relative to different O and f and to the same St, but is not
immediately available due to the variable spacing of St. The simplest way of obtaining such a relation is linking Fi,k to a
value of F taken at Ok + 1 and interpolated between two suitable frequencies fI= IDf and fI + 1=(I+1) Df:

Fi,k ¼ bi,kFI,kþ1þci,kFIþ1,kþ1, k¼ 1,M-1 (22)

with bi,k and ci,k such that Sti,k ¼ bi,kStI,kþ1þci,kStIþ1,kþ1. I may be determined imposing that

StI,kþ1rSti,krStIþ1,kþ1 (23)

and StI,k + 1 may be found substituting Eq. (18) in Eq. (2):

StI,kþ1 ¼
2pfI

Okþ1
¼ I

2pf

Okþ1
(24)

Substituting Eq. (24) into Eq. (23) yields

I� Ii,k ¼ int i
Okþ1

Ok

� �
(25)

and thus

bi,k ¼
StIþ1,kþ1�Sti,k

StIþ1,kþ1�StI,kþ1
¼

2pðIþ1ÞðDf=Okþ1Þ�2piðDf=OkÞ

2pðDf=Okþ1Þ
¼ Iþ1�iðOkþ1=OkÞ (26)

ci,k ¼
Sti,k�StI,kþ1

StIþ1,kþ1�StI,kþ1
¼

2piðDf=OkÞ2pIðDf=Okþ1Þ

2pDf=Okþ1
¼ iðOkþ1=OkÞ�I¼ 1�bi,k (27)

For each value of k ranging between 1 and M�1, Eq. (22) yields i=1, Nk independent relations. Nk equals the maximum
value of i such that Sti,krStN,k +1:

Nk ¼ int N
Ok

Okþ1

� �
oN (28)

In order to reduce the number of equations to be solved simultaneously and to simplify the system of equations,
Eq. (21) is calculated in k and then subtracted from the same equation calculated in k+1, thus allowing Gi to be eliminated.
This yields

Fi,kþ1�Fi,k ¼ ðSPLi,kþ1�SPLi,kÞ�10log10ðOkþ1=OkÞ
3þa
¼ Ti,k, i¼ 1,N, k¼ 1,M�1 (29)
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Eqs. (22) and (29) constitute a new algebraic system of Neq ¼ ðM�1ÞNþ
PM�1

k�1 Nk linear equations in Nun=M�N

unknown values of Fi,k. The absence of Gi in the new system makes Fi,k independent of it and thus the trend of Gi cannot
affect convergence and related errors. This is confirmed by the tests reported in 3.4.1. Gi is obtained by direct substitution
of Fi,k in Eq. (21).

More equations than unknowns are likely to result since the spectra are typically measured at M=5 values of O (usuallyP4
k ¼ 1 Nk4N and thus Neq ¼ 4Nþ

P4
k ¼ 1 Nk45N¼Nun). The input data set is larger than what is necessary and the system

is redundant, obliging to solve it by means of error minimization techniques. This is not a disadvantage since it improves
the accuracy of the results. However, assuming that there are no experimental errors and that the numerical
approximations due to the linear interpolation are negligible, a number of linearly dependent equations results and the
intrinsic indeterminacy in the absolute levels of both F and G remains. Hence, after the spectral decomposition, the value
of K will have to be imposed employing considerations based on the physics of the problem. This results in opposite shifts
of F and G.

A further numerical problem arises: in Eq. (22) Fi,1 appears only on the left-hand side while Fi,M appears only on the
right-hand side. Thus, for any i the unknowns Fi,1 and Fi,M, relative to the extreme rotational speeds O1 and OM, are more
weakly linked to the others than the unknowns Fi,k relative to the intermediate rotational speeds Ok, k=2, M�1 and lower
accuracy of the solution may result. Hence, it is worth linking the unknowns relative to the same St and to O1 and to OM by
means of an equation analogous to Eq. (22):

Fi,M ¼ bi,MFI,1þci,MFIþ1,1, i¼NM ,N (30)

where NM ¼ intðOM=O1Þ, I¼ intðiðO1=OMÞÞ, bi,M ¼ Iþ1�iðO1=OMÞ, and ci,M ¼ 1�bi,M . This may be done only for those Fi,k

(k=1 and M) for which the St ranges relative to O1 and OM overlap, that is for i=NM, N. Eq. (30) and the other relations have
been obtained from Eqs. (22)–(28) substituting M, 1, and 1 in place of k, k+1, and N, respectively. Again, if there are no
experimental errors and if the numerical approximations due to the linear interpolation are negligible, Eq. (30) is
dependent on the set resulting from Eq. (22) written for k=1, M�1. Thus, in principle, no new information is added but, as
it will be seen in Section 3.3, an important improvement in the accuracy results.

The computed ‘‘free-field’’ SPL, (SPLcomp)i,k may be reconstructed solving Eq. (21) with respect to SPLi,k, substituting the
computed Fi,k, summing 10 log10(Ok

3 +a) and assigning Gi=0. The value of C is implicitly included in the value of K, which,
in the present work, is regarded as a constant to be assigned.

3.2. The solution algorithm

The system to be solved is constituted by Eqs. (29), (22), and (30) and its solution is given by the N�M values of Fi,k for
i=1, N and k=1, M. More precisely, M pieces of F(St) are obtained which are defined on M usually overlapping St ranges
Stmin,k–Stmax,k. Each range depends on Ok since Stmin,k=2p f1/Ok and Stmax,k=2p fN/Ok.

Once Fi,k has been found, Gi=G(Hei), i=1, N, may be computed by direct substitution of Fi,k in Eq. (21). In fact, M pieces
Gi,k=Gk(Hei) defined over M perfectly superposed He ranges may be found. In principle these pieces should be coincident
since G is independent of O but they are actually slightly different due to a number of reasons. Basically, experimental
errors, errors in the computation of the power spectra, numerical approximations, and presence of parts of the measured
power spectra which do not respect the structure of Eq. (10) may be a further reason of dispersion of the Gk(Hei) trends.
Obviously, it is more convenient to calculate a mean value Gi ¼ 1=M

PM
k ¼ 1 Gi,k and to employ the dispersion of Gi,k about Gi

as an overall estimate of the accuracy and correctness of the results. Systematic experimental errors, function of f would be
recognized by the algorithm as propagation effects and could not be identified in any way.

Due to the above listed reasons and since the number of equations Neq will hardly equal the number of unknowns Nun,
the system cannot be immediately solved. Thus, a new linear system with Neq=Nun will be found by means of the least
squares method [14]; the latter method is well known and only the strictly necessary relations will be reported here. The
general form of an algebraic linear system of m=1, Neq equations in the unknowns xn, n=1, Nun is

XNun

n ¼ 1

am,nxn ¼ bm, m¼ 1,Neq (31)

An approximate solution yn satisfies the mth equation with an error

em ¼
XNun

n ¼ 1

am,nyn�bm, m¼ 1,Neq (32)

The norm E of the error is given by

E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNeq

m ¼ 1

emem

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNeq

m ¼ 1

XNun

n ¼ 1

am,nyn�bm

 ! XNun

j ¼ 1

am,jyj�bm

0
@

1
A

2
4

3
5

vuuut (33)

E=0 if and only if yn=xn. For overdetermined systems an exact solution xn does not exist thus E40 always and only a ‘‘best’’
solution xn

n may be found, the one which minimizes E. xn
n is the solution of the Nun linear equations ð@E2=@ylÞ ¼ 0, l=1, Nun
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and this condition corresponds to

XNun

n ¼ 1

XNeq

m ¼ 1

am,lam,n

 !
x�n ¼

XNun

n ¼ 1

Al,nx�n ¼ Bl ¼
XNeq

m ¼ 1

am,lbm, l¼ 1,Nun (34)

The system to be solved has the form
PNun

n ¼ 1 Al,nx�n ¼ Bl where xn
n corresponds to Fi,k. Al,n and Bl (n, l=1, Nun) must be

found from am,n and bm, which may be obtained from Eqs. (29), (22), and (30). Some of am,n correspond to the coefficients of
the unknown Fi,k but most of them equal zero, resulting in a sparse coefficients matrix. Part of bm equal Ti,k, the right-hand
side term of Eq. (29), and the remainder are zero since Eqs. (22) and (30) are homogeneous in Fi,k. Finding the
correspondence between the coefficients requires establishing the correspondence between the subscripts m and n of
Eq. (31) and the subscripts i, I, and k of Eqs. (29), (22), and (30). Once am,n and bm have been found, Al,n and Bl may be
obtained from Eq. (34): Al,n ¼

PNeq

m ¼ 1 am,lam,n and Bl ¼
PNeq

m ¼ 1 am,lbm. The bi-conjugate gradient method, [14], will be used to
solve such a large algebraic linear system.

The sparseness of the coefficients matrix of the system given by Eq. (34) allows a fast solution of the system, but
requires an efficient indexing of the non-zero terms. In turn this requires a detailed knowledge of the structure of the
coefficients matrix of the system given by Eq. (31). The description of the latter is surely worthy and will be given
hereinafter. On the contrary, due to the more complex structure of the coefficients matrix of the system given by Eq. (34),
the positions of its non-zero elements will not be given.

The basic structure of the system given by Eq. (31) is shown in Fig. 1. The coefficients matrix has n=1, Nun columns, with
Nun=NM and n=[k+(i�1)M] (that is x�1 ¼F1,1, x�M ¼F1,M , x�Mþ1 ¼F2,1, etc.). The coefficients matrix is composed of the
following:
(1)
 An upper part derived from Eq. (29) which contains N blocks, Fig. 2a, of M�1 rows and M columns, resulting in m=1,
N� (M�1) rows. Each row is related to a pair Ok and Ok +1, k=1, M�1 and each block is related to a frequency value fi,
i=1, N. The mth row, m=[k+(i�1)(M�1)], contains the two non-zero elements – 1 and 1 in the columns n=[k+(i�1)M]
and n=[k+(i�1)M+1], respectively. P
(2)
 A lower part derived from Eqs. (22) and (30) and containing a total number of M
k ¼ 1 Nk rows for m=[N� (M�1)+1],

½N � ðM�1Þþ
PM

k ¼ 1 Nk�. The rows derived from Eq. (22), Fig. 2b, and from Eq. (30), Fig. 2c, have three non-zero
elements per row; an element equals 1 and is located in the [k+(i�1)�M]th column. In the rows derived from Eq. (22)
the other non-zero elements are located in the [k+1+(I�1)�M]th and in the [k+1+I�M]th columns and equal – bi,k

and – ci,k, respectively. In the rows derived from Eq. (30) the other non-zero elements equal �bi,M and �ci,M and are
located in the [1+(I�1)�M]th and in the [1+ I�M]th columns, respectively. In both cases I is obtained substituting the
actual value of k in Eq. (25).
The right-hand side vector is composed of two parts corresponding to the upper and lower parts of the coefficients
matrix. In the upper part there are the elements bm, m=1, N� (M�1) which equal Ti,k, Eq. (29), and are usually non-zero.
All the elements in the lower part equal zero since they derive from Eqs. (22) and (30), which are homogeneous in the
unknown F.
ΣN
k

N
x 

(M
–1

)

N
M

T1,1

= TN, (M–1)
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0

0
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Fig. 1. Structure of the system derived from Eq. (31).
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Fig. 2. System derived from Eq. (31): (a) Upper block derived from Eq. (29). (b) Row derived from Eq. (22). (c) Row derived from Eq. (30).
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3.3. Accuracy of the method

This section is aimed at providing some guidelines for the choice of the ranges and spacings of both f and O. To this
purpose, the solution of the linear system resulting from Eqs. (22), (29), and (30) should be considered as composed of two
steps:
(1)
 Solution of Eq. (29) at He=const (i.e. at i=const). One arbitrarily assigns Fi,1 and directly obtains Fi,k for k=2, M within
the St range Sti,1–Sti,M, i.e. 2pfi/O1�2pfi/OM. This is correct no matter the values of both DO and Df. Letting i vary
between 1 and N yields N pieces of M values of the function F, defined over N different St ranges. Usually, the N pieces
do not superpose due the arbitrary choice of Fi,1, i=1, N and thus they must be matched with each other.
(2)
 Shift and superposition of the N pieces of F in the y-axis direction, as seen in Section 2.2. To do this properly, it is
necessary that the F pieces relative to neighboring frequency (i.e. He) values present a sufficient overlap, which
requires a sufficient overlap in the related St ranges. Unfortunately, it is possible that this does not happen, resulting in
the most serious cause of inaccuracy of the procedure. The overlap of the St ranges depends on the spacings Df and DO
and on the ranges f1–fN and O1–OM. In principle, to match the F pieces it is sufficient to find a relation between the N

arbitrarily chosen Fi,1 but in practice the variable St spacing and the data spreading due to the experimental errors
make the shift of the N F pieces more precise if it is done by means of Eqs. (22) and (30) which link most of Fi,k and not
only the N arbitrary Fi,1. Obviously, a large number of F values within each F piece (i.e. a large M value) surely
improves the accuracy of the shift procedure.
The condition on the St ranges overlap may be analyzed considering inequality (23) and Eq. (25) with the purpose of
obtaining a well-conditioned coefficients matrix. To this aim, Eqs. (22) and (30) must be independent of Eq. (29). First, let
us consider how such a problem arises with Eq. (22). For fixed values of i and k, Eq. (29) links Fi,k and Fi,k + 1 only and thus,
in order to avoid duplicating this link, Eq. (22) should not contain Fi,k +1. It links Fi,k, FI,k + 1, and FI +1,k + 1 and thus the
resulting condition is IZ i+1 for all values of i and k, which means that StI,kZSti + 1,k, i.e. fIZ fi+ 1. In case I= i, the
interpolation of Eq. (22) becomes an extrapolation of the trend between Fi,k and Fi,k +1 and the situation becomes even
more severe if the coefficient ci,k of Eq. (27) is small. In the latter case the coefficient bi,k of Eq. (26) approaches 1, a weak
coupling of Fi,k with unknowns other than Fi,k + 1 results and the system may degenerate. The least square method and the
bi-conjugate gradient method are very robust and the whole algorithm can hardly diverge but, obviously, there may be
errors in those parts of the solution where I= i. However, the overall loss of accuracy is also related to the number of points
at which I= i.
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Considering Eq. (25), the condition IZ i+1 becomes I¼ intðiðOkþ1=OkÞÞZ iþ1 thus yielding

iZ
Ok

ðOkþ1�OkÞ
¼

Ok

DO
(35)

Therefore DO must not be too small in comparison with Ok. This condition is to be respected for any Ok, k=1, M�1 and
hence it must be applied to the most unfavorable situation, i.e. for k=M�1, where O is maximum. This yields iZOM�1/DO,
which, considering Eq. (18), results in fZOM–1Df/DO.

Eq. (30) yields a less restrictive condition: to avoid decoupling, F1,1, the value at the lowest frequency, for which the
situation is most severe, must be present in at least one of the resulting equations and has to be linked to a value of Fi,M at
any frequency fiZ f2. In other terms, there must exist iZ2 such that Eq. (30) yields I=1. That is I¼ intðiðO1=OMÞÞ ¼ 1, which
results in

1þ
OM

O1
Z iZ

OM

O1
(36)

which is more easily respected than inequality (35). This proves the usefulness of Eq. (30).
However, inequalities (35) and (36) are sufficient rather than necessary conditions to avoid the data decoupling. Indeed,

if the linear interpolation is adequate for the local characteristics of the experimental data set (basically their smoothness,
slope, and curvature) the accuracy may not be as affected as it could be expected simply based on the reported analysis.

Inequalities (35) and (36) represent the condition to avoid data decoupling at low frequencies but a similar, though less
severe, loss of accuracy may take place at high frequencies too. It is due to the incomplete superposition of the St ranges
(Stmin,k–Stmax,k) related to the different Ok at which the SPL spectra have been measured. At OM the St range upper bound is
Stmax,M=2pfmax/OM and is the smallest one (i.e. Stmax,k=2pfmax,k/Ok4Stmax,M for any koM). Thus for StoStmax,M data at
St=const are available in all of the M spectra while for St4Stmax,2=2pfmax/O2 such data are available only at O=O1. In the
intermediate cases, i.e. for Stmax,2oStoStmax,M, data are available in a number of spectra varying between 2 and M�1. As a
result, the number of spectra to which Eq. (22) may be applied gradually decreases as St becomes larger than Stmax,M and
the overall accuracy decreases too. Anyway, Eq. (30) may be employed up to f= fmax and thus the unknowns Fi,k at
St4Stmax,M are not completely decoupled from the ones at StoStmax,M. Therefore, this is not expected to be a severe
problem, but it is worthy that all SPL spectra provide data in the St range of interest, i.e. that the upper bound of this range
is smaller than Stmax,2 at least, thus requiring a suitable choice of the f and O ranges.

3.4. Effect of the typical features of measured spectra on the performance of the algorithm

The present section is aimed at verifying how the results of the method may be affected by ranges and spacings of both f

and O. The effect of experimental errors is considered too. Determination and correctness of a and K are not concerned
since in the present work their values have to be assigned. The algorithm has been implemented in a Fortran program
which has been tested using data numerically generated according to a simplified form of Eq. (11):

SPLprop,anðf ,nÞ ¼ SPLff ,anðf ,nÞþGanðHeÞ (37)

SPLff,an is the ‘‘free-field SPL’’, the quantity without undesired propagation effects, and SPLprop,an is the SPL in presence of
propagation effects. For easiness, in these tests the rotational speed n=60 O/2p (rev/min) is used instead of O (rad/s).
SPLff,an is given by

SPLff ,anðf ,nÞ ¼FanðStÞþ10log10n3þa�50 (38)

with a=1. Fan and Gan are computed by means of the following analytical expressions:

FanðStÞ ¼ 10log10
ðSt=50Þ4

½1þðSt=50Þ4�2
(39)

GanðHeÞ ¼ 10log10½1�0:95sinðgHeÞ� (40)

where f is expressed in Hz, St=60 f/n, and He= f/1046. The parameter g acts on the ‘‘frequency period’’ of the peaks of G,
thus allowing to represent operation in free-field conditions (g=0) or in strongly reflecting environment (g40). The trend
of SPLprop,an resulting from Eq. (37) is typical of the trailing edge noise generated by open rotors of axial flow fans.

To evaluate the accuracy of the method, one may compare SPLcomp, the free-field SPL spectrum reconstructed by means
of the spectral decomposition, with SPLff,an. To this aim the difference (error) between SPLcomp and SPLff,an is employed:

eSPLðf ,nÞ ¼ SPLcompðf ,nÞ�SPLff ,anðf ,nÞ (41)

Due to Eqs. (37) and (38) and to the use of Eq. (21) for reconstructing SPLcomp, the equality eF=�eG=eSPL+const results.
Hence, to evaluate the correctness of the results it is sufficient to study the trend of eSPL. In all computations, the assigned
a equals 1, i.e. the value employed in Eq. (38). Since in the present work K is an arbitrary constant, the absolute levels are
not important and a constant eSPL indicates that the exact F has been obtained. A variable trend indicates the presence
of errors.
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Some preliminary tests have shown that the method may converge even with spectra related to M=2 values of O only,
but further tests with superposed random errors have shown that M=5 is a good trade-off between accuracy and size of the
input data set. Thus, M=5 has been assumed as standard value. The reported tests show that the method works properly
and that it may be employed to perform the spectral decomposition of experimental SPL power spectra. This issue will be
confirmed by the practical application shown in the next chapter.

3.4.1. Effect of the propagation function and general features of the solution

To study the effect of G on the solution, the values 0.2, 2, 40 have been considered for g, yielding a ‘‘frequency period’’ of
32,861, 3286, and 164.5 Hz, respectively. M=5 rotational speeds have been employed with Dn=500 rev/min, resulting in
n=2000, 2500, 3000, 3500, and 4000 rev/min. The spectra, Fig. 3, have been computed with Df=12.5 Hz within the range
12.5–20,000 Hz.

After the spectral decomposition, a constant value of K has been subtracted from the computed spectra and its value has
been chosen so as to superpose SPLcomp to SPLff,an that is to minimize eSPL. The absolute value of eSPL is plotted in Fig. 4, for
all of three cases, the trends are very similar and are almost independent of g, thus confirming the comment to Eq. (29), i.e.
that the absence of G from the system of equations makes Fcomp independent of Gan. 9eSPL9 has some oscillations and a
relatively large magnitude (1 dB at most) at fo100 Hz (io8), then it quickly decreases of almost two orders of magnitude
(f=200–1000 Hz) and finally it slightly grows for f41000 Hz. The oscillations at low frequency are probably due to the
decoupling between data at different frequencies described in Section 3.3. Indeed, the frequency ranges for the data
decoupling resulting from inequalities (35) and (36) are similar to the ones where the oscillations take place: inequality
(35) yields iZ(4000 rev/min)/(500 rev/min)=8 (fZ100 Hz), while inequality (36) yields iZ(4000 rev/min)/(2000 rev/
min)=2 (fZ25 Hz). Thus at i=1 (f=12.5 Hz) the decoupling between data is complete, at 7Z iZ2 (87.5 HzZ fZ25 Hz) the
decoupling is partial, and above i=7 all the data are correctly coupled with each other. As reported in Section 3.3, the slight
growth at high f is probably due to the fewer data available at the higher St. For each g value, the very good superposition of
the 9eSPL9 curves related to all n indicates that the computed F and G curves, not shown for reasons of space, collapse
correctly on single curves too. Thus the algorithm does not add unexpected errors and works properly.

3.4.2. Effect of the presence of random errors

It is important to verify how much the random errors, which are always present in experimental data, affect Fcomp. To this aim,
fifteen independent random noise signals Srandom(f) have been numerically generated and then added to the SPLprop,an employed in
the previous tests, thus yielding three data sets comparable to measured SPL power spectra. The fifteen Srandom(f) have the same
statistical properties: they lie in the range 74 dB with a zero average and an rms of about 2.6 dB. Comparing with typical
Fig. 3. SPL and G generated by means of Eqs. ((37)–(40)): (a) SPLff,an, g=0. (b) SPLprop,an, g=0.2. (c) SPLprop,an, g=2. (d) SPLprop,an, g=40. n=2000 rev/min;

n=2500 rev/min; n=3000 rev/min; n=3500 rev/min; �n=4000 rev/min.



Fig. 4. Error in reconstructing SPLff,an: (a) 9eSPL9, g=0.2. (b) 9eSPL9, g=2. (c) 9eSPL9, g=40. n=2000 rev/min; n=2500 rev/min; n=3000 rev/min;

n=3500 rev/min; �n=4000 rev/min.

Fig. 5. Tests with random errors: (a) SPLreal,an. (b) 9eSPL9. n=2000 rev/min; n=2500 rev/min; n=3000 rev/min; n=3500 rev/min; �n=4000 rev/min.
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experimental data, these are rather high values since a suitable choice of measurement parameters usually results in much
smoother spectra. Anyway, this choice allows to visualize the results and to test the method under conditions more severe than
the usual ones. The tests have been performed for the three cases g=0.2, 2, and 40. Again, the computations have confirmed that
Fcomp is independent of G and thus, for reasons of space, only the plots relative to g=2 are reported.

The important quantities are SPLff,an, resulting from Eq. (38), and SPLreal,an, the ‘‘realistic’’ quantity, representing the
measured SPL, i.e. SPLprop,an with superposed random errors: SPLreal,an=SPLff,an+Gan+Srandom. The chosen K minimizes
the mean level of eSPL and thus comparing eSPL with the maximum level of Srandom (4 dB) allows to evaluate how much the
random errors affect the whole procedure. The plots of SPLreal,an and 9eSPL9 are reported in Fig. 5. The irregular trend of 9eSPL9
indicates that, although the algorithm is based on an error minimization technique, the random fluctuations are not
eliminated. Up to 10 kHz they are reduced (their level is smaller than 4 dB) and above 10 kHz they are slightly amplified
(their level reaches about 10 dB at 20 kHz); this growth is probably caused by the fewer data available at high St, as
mentioned in Section 3.3. However, the rms of eSPL (between 2.15 dB, n=4000 rev/min, and 2.34 dB, n=2000 rev/min) is
smaller than 2.6 dB, the rms of Srandom.

At all n, the 9eSPL9 curves are well superposed with each other, indicating that the trends of SPLcomp correctly reproduce
the original trends of SPLff,an. Despite the high level of Srandom, the algorithm damps or at least does not excessively amplify
the random errors, providing an indication of its robustness and accuracy.



Fig. 7. Error in reconstructing SPLff,an with reduced DO: (a) 9eSPL9 without random errors. (b) 9eSPL9 with random errors. n=2000 rev/min;

n=2025 rev/min; n=2050 rev/min; n=2075 rev/min; �n=2100 rev/min.

Fig. 6. SPLan with reduced DO: (a) SPLprop,an. (b) SPLreal,an. n=2000 rev/min;– n=2050 rev/min;– n=2100 rev/min.
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3.4.3. Effect of the rotational speed spacing

In order to evaluate the effect of a reduced Dn, the tests have been repeated with Dn=25 rev/min, a very small,
unrealistic value resulting in n=2000, 2025, 2050, 2075, and 2100 rev/min. Inequalities (35) and (36) show that complete
coupling exists for iZ(2100 rev/min)/(25 rev/min)=84 (fZ1050 Hz) and that weak coupling exists for iZ(2100 rev/min)/
(2000 rev/min)=1.05, (iZ2 and fZ25 Hz), respectively.

The input spectra, with and without random errors, Fig. 6, have been computed with g=2 and Df=12.5 Hz, within the
range 12.5–20,000 Hz. The extremely small Dn results in a difference in the SPLff,an curves of 2 dB at most, less than 2.6 dB,
the rms of Srandom. Such a condition is very unfavorable from the numerical point of view and is a further reason of severity
for the tests in presence of random errors.

9eSPL9 in absence of random error, Fig. 7a, has a maximum value of about 6 dB at f=12.5 Hz and quickly decreases to
values smaller than 0.1 dB for iZ7, i.e. fZ87.5 Hz (again, the chosen K minimizes the mean level of eSPL). In the tests with
random error, the value of K has been chosen to have the best superposition of SPLcomp and SPLff,an for fZ10 kHz, where the
trend of the latter is correctly reproduced (i.e. where eSPL is minimum). The 9eSPL9 plot, Fig. 7b, shows that the algorithm is
able to extract the overall trend of SPLff,an although important errors (10 dB or more) are present for fr10 kHz. Levels
between 20 and 36 dB are present for fr87.5 Hz, where the decoupling between data is complete, while for fZ10 kHz
9eSPL9 is smaller than 5 dB, a good result comparing with 4 dB, the maximum level of Srandom. In the intermediate frequency
range, eSPL approximately lies in the range 710 dB. These tests, performed in rather severe and unrealistic conditions,
provide a further indication of the robustness of the method.
4. A practical application of the method

The present chapter aims at showing the kind of results and information which may be obtained by means of the
method and at verifying the practical difficulties in its application. There is no aim at studying any specific physical
phenomenon and although it is not the main purpose of the present work, the criteria for estimating a and K presented in
Section 2.1 will be applied and discussed. The discussion cannot prove that the assigned a and K are the actual ones, but it
provides a physical ground for evaluating the correctness of the chosen values. Obviously, if the assigned values are not
correct also the resulting Fcomp, Gcomp, and SPLcomp will not be the actual ones.
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4.1. Description of the experimental setup and of the measured SPL

In order to obtain the experimental data sets, an axial flow fan for automotive use has been tested in the DIMSET hemi-
anechoic chamber. The fan rotor has 7 blades and a tip diameter of 315 mm and has been provided by Johnson
Electric—GATE. It has been mounted on a test plenum designed according to the ISO 10,302 prescriptions [15] with the
rotational axis parallel to the floor at a height of 1 m and it has been operated at the design conditions (j=0.164,
c¼ 8ðpout�p0Þ=r0ðODÞ2 ¼ 0:104).

The measurements have been taken by means of a Brüel & Kjær 3560 spectrum analyzer at M=5 different rotational speeds
(n=2000, 2500, 3000, 3500, and 4000 rev/min) with the microphone placed on the rotational axis 1 m upstream of the runner. The
SPL power spectra have been computed in the range 0–20 kHz with Df=12.5 Hz employing 100 records of 1600 data weighted
with a Hanning window (50% superposition). For such kind of measurements this typically results in errors of less than 1 dB in the
SPL spectra computation. Two different configurations have been tested and the corresponding SPL spectra, before and after the
spectral decomposition, have been compared. Since in both cases the generation mechanism is unchanged, the spectral
decomposition is expected to result in the same Fcomp and SPLcomp and in different Gcomp. Assuming that the theory presented in
Section 2.1 applies to the present cases, this allows to evaluate the effectiveness of the method.

The first configuration is a free-field one, constituted by the fan within the hemi-anechoic chamber in the standard test
configuration; it is intended to approximate the ideal open rotor, for which G(He)=0 and the only propagation effect is
represented by the term Maa of Eq. (9). In fact, slight propagation effects may be expected which are possibly due to
reflections from the test plenum, diffraction and scattering by the rotor parts and non perfect anechoicity of the test
environment. The second configuration has been obtained interposing a square wooden panel with a side 400 mm long
between the fan and the microphone at a distance of 10 mm from the latter. This creates a strong, frequency dependent
attenuation in the measured SPL, thus adding an important propagation effect to the free-field spectrum.

The spectra measured in the free-field configuration, SPLff,meas, Fig. 8a, have a typical trend: in the low f range
(fo3–4 kHz) some peaks at the blade passing frequency harmonics (St=7, 14, 21, 28, and 35, i.e. below 2.4 kHz), thus due
to the tonal noise, are superposed to rather uniform, slightly decreasing values. This trend probably results from the
composition of the trailing edge noise with other kinds of noise, such as turbulence ingestion noise and noise due to the tip
leakage flow. At the middle f (f=3.5–5.5 kHz), the spectrum has a change of slope resulting in an asymptotic trend at high f

with a slope of about �3.4 (i.e. Sppðf Þ�!
f-1

C=f 3:4). This value is close to �10/3, the one found by Chase [13] for the trailing

edge noise. Anyway, as far as the present procedure is concerned, the most interesting feature is the slightly wavy trend,
apparent for f43.5 kHz, which prevents from clearly identifying the shape of the spectrum. These ‘‘oscillations’’ have an
amplitude of less than 2.5 dB and a ‘‘frequency period’’ of about 2.5 kHz. Their propagation nature may be inferred since in
that frequency range the spectra relative to different n may be apparently superposed by means of a simple shift along the
y-axis. This is the usual explanation for such a trend, Neise and Barsikow [2] and Mongeau et al. [4]. In principle, in absence
of propagation effects, according to Eq. (14), the spectra should collapse on a single curve when scaled with 10 log10(n/
60)3 +a and plotted versus St, thus allowing to estimate a. In the present case, basing on error minimization in matching the
part of the spectra above St=14 (the 2nd blade passing frequency harmonic), the best collapse of the curves related to the
free-field case results when a=0.7. The scaled curves are spread within a band of about 5 dB, Fig. 8b, and the propagation
effects are expected to be the major cause for this. A confirmation of this fact may be found in the plots of SPLcomp and

Gcomp, the SPL and G reconstructed by means of the spectral decomposition.

For fo700 Hz, the spectra measured in the shielded configuration, SPLsh,meas, Fig. 9a are quite similar to the ones
relative to the free-field configuration but for f4700 Hz, as the wavelength l becomes smaller than the dimensions of
the wooden panel, the differences between the two configurations become apparent and increase with f. The interposition
of the wooden panel causes a strong wavy trend, clearly independent of n, as expected for such a propagation effect.
Fig. 8. SPLff,meas: (a) SPL versus f. (b) Scaled SPL versus St. n=2000 rev/min; n=2500 rev/min; n=3000 rev/min; n=3500 rev/min;

�n=4000 rev/min.



Fig. 9. SPLsh,meas: (a) SPL versus f. (b) Scaled SPL versus St. n=2000 rev/min; n=2500 rev/min; n=3000 rev/min; n=3500 rev/min;

�n=4000 rev/min.
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The oscillations have an amplitude of about 5 dB with a rather constant ‘‘frequency period’’ (between 1.5 and 2 kHz) and,
for f42 kHz, a growing attenuation appears which reaches 15–20 dB at high f. The spectra, scaled with 10 log10(n/60)3.7

and plotted versus St, Fig. 9b, collapse poorly due to a dispersion within a band of about 10 dB (the value a=0.7 has been
chosen according to the scaling of the spectra measured in the free-field configuration). The propagation effects are again
the expected cause for this dispersion.

4.2. Results of the spectral decomposition

Since a influences the asymptotic trends of both F and G, once the spectral decomposition has been performed, the
analysis of the high f part of SPLff,comp and SPLsh,comp, Fig. 10a, and Gff ;comp and Gsh;comp, Fig. 10b, may provide a check of the
assigned value of a. Indeed, though chosen on a different ground, for f410 kHz, the value 0.7 results in the flattest trend of
Gff ;comp and in a constant mean value of Gsh;comp. This agrees with the fact that, at high f, propagation phenomena are
expected to be independent of f in the free-field configuration. Therefore, Kff may be chosen imposing that Gff ;compffi0
Gff ;comp for f410 kHz. The resulting levels and trends of SPLff,comp and SPLff,meas are very close, thus confirming the
correctness of the assigned a and Kff. Ksh may be found considering that the trends of both SPLsh,comp and SPLff,comp should
be almost identical since the source is the same and the propagation effects have been eliminated. To this aim, the
SPLsh,comp curves have to be shifted as much as they can superpose to the SPLff,comp ones.

Basing on the results of the tests described in Section 3.4, one may assume that, given a SPL data set respecting the
structure of Eq. (10), the algorithm is able to separate the two parts F and G. Obviously, the numerically generated SPL
employed in the tests fully respect the assumed structure but spectra computed from experimental data may be affected
by inconsistencies of variable importance and origin. Due to the structure of the algorithm, Section 3.2, these
inconsistencies would result in a dispersion of Gi,k about its average Gi ¼ ð1=MÞ

PM
k ¼ 1 Gi,k. This dispersion may be

evaluated by means of its rms value eG (see Fig. 10c):

eG i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
k ¼ 1

ðGi,k�Gi Þ
2

vuut (42)

The average value
PN

i ¼ 1 eGi
=N of eGi

equals 0.380 dB in the free-field configuration and 0.342 dB in the shielded one.
The results of the application of the method, Fig. 10, may be analyzed with reference to three different frequency

ranges:
�
 fo80 Hz, where the experimental errors are expected to strongly affect the results of the measurements and thus the
results of the spectral decomposition cannot provide useful information.

�
 80 Hzo fo700 Hz, where SPLff,comp and SPLsh,comp should be identical and Gff ;comp and Gsh;comp are expected to be

similar since the wooden screen dimensions (0.4 m) are smaller than l (about 0.5–4 m).

�
 700 Hzo fo20,000 Hz, where SPLff,comp and SPLsh,comp should be identical while the differences between Gff ;comp and

Gsh;comp are expected to grow with f due to the decrease of l.

For fo80 Hz both SPLff,comp and SPLsh,comp have similar trends but their levels differ of about 6 dB. On the contrary,
SPLff,meas and SPLsh,meas have more similar trends and levels, but in each case they are spread at random within a range of
less than 4 dB. This dispersion is due to the experimental errors which are characteristic of measurements at such low f and
are independent of n: locally, SPLff,meas and SPLsh,meas do not respect the structure given by Eq. (10), resulting in the



Fig. 10. SPLcomp, G and eG in (—) free-field and (— . —) shielded configurations: (a) SPLff,comp and SPLsh,comp; n=2000 rev/min; n=3000 rev/min;

�n=4000 rev/min. (b) Gff and Gsh. (c) eGff
and eGsh

.
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observed differences in the SPLcomp curves. The same holds for both Gff ,comp and Gsh,comp. eGi,ff
and eGi,sh

are always larger
than their rms values (0.380 and 0.342 dB, respectively) and attain values larger than 1 dB.

For 80 Hzo fo20,000 Hz both the SPLff,comp and SPLsh,comp curves are quite similar to each other: the average difference
between the curves related to the same O is smaller than 0.6 dB, in 10% of points it exceeds 1 dB and in 1.4% of points it
exceeds 2 dB. These values are acceptable since they compare to the typical errors affecting the measured SPL spectra of
present case. SPLff,comp and SPLsh,comp are congruent with the expected trends: a wide flat part at the intermediate f (below
3–5 kHz, depending on n) and a smooth asymptotic trend proportional to f�3.4 at high f. Below 700 Hz, the coincidence
between SPLff,comp and SPLsh,comp provides less information about the present algorithm since in that frequency range the
SPLff,meas and SPLsh,meas curves are rather close to each other. On the contrary, above 700 Hz, the spectra measured in
the two configuration are apparently different and hence the good coincidence between SPLff,comp and SPLsh,comp indicates
that the method is able to identify their common generation mechanism.

For 80 Hzo fo700 Hz both Gff ,comp and Gsh,comp are quite similar to each other. This is in agreement with the fact that
l is larger than the wooden screen dimensions, resulting in a negligible effect on sound waves, i.e. in the same propagation
effects for both configurations. For f4700 Hz Gff ,comp varies between �3 and 2 dB. Gsh,comp has a more complex trend:
it oscillates between a minimum of about �10 dB at f=800 Hz and a maximum of �2.5 dB at f=1800 Hz; then an
increasing attenuation takes place with oscillations in a range of about 7 dB. This trend agrees with the description of the
measured spectra and may be attributed to the diffraction caused by the screen.

For f480 Hz the trends of both eGi,ff
and eGi,sh

present fluctuations generally below 1 dB, with a limited number of peaks
not exceeding 2 dB for f=200–1500 Hz. These peaks are probably due to the tonal noise peaks in SPLff,meas and SPLsh,meas at
the blade passing frequency harmonics. Indeed, the tonal noise usually scales with Ma3 while the whole spectrum has been
scaled with Ma0.7, thus resulting in a wrong scaling of the tonal noise component. This is expected to affect the spectral
decomposition about the blade passing frequency and harmonics. However, the SPL data related to the tonal noise are very
few comparing with the data related to the broad band noise and thus the former are not expected to affect the trends of
Fcomp and Gcomp. Indeed, the typical magnitude of eGi,ff

and eGi,sh
compares to the random fluctuations of SPLff,meas and

SPLsh,meas indicating that the spectral decomposition should not be affected by other important sources of errors. Finally,
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comparing the magnitude of eGi,ff
and eGi,sh

with the typical variations of both Gff ,comp and Gsh,comp (5–7 dB) shows that,
though not negligible, the errors cannot seriously affect the trends of the results.

This brief analysis shows that the present algorithm is able to recognize the common acoustic source in apparently
different SPL spectra, separating the effect of the different measurement environment from the received noise.
Furthermore, despite the limited number of employed spectra, the spectral decomposition is performed with errors which
compare to the random errors affecting the measured spectra.

5. Conclusions

The application of the similarity theory to the aerodynamic noise generated by low Mach number sources such as low-
speed fans has been presented with specific regard to the spectral structure of the SPL. Then, the spectral decomposition
technique has been considered as a means of separating the noise part dependent on the flow velocity from the one due to
propagation effects. Comparing with other existing works on the subject, the present study is specifically aimed at
describing a data analysis technique together with its implementation. It is novel because of the following:
�
 The mathematical problem and the properties of its solution have been clearly analyzed.

�
 The developed algorithm is based on the rigorous solution of the derived equations. This has also allowed to analyze

how typical measurement parameters may affect the accuracy of the method. A detailed description of the algorithm is
reported too.

The main practical limitation of the method is the impossibility of determining absolute level and mean slope of the
solutions. These indeterminancies are intrinsic to the physical phenomenon and thus they go beyond the main purpose of
the present work. Nevertheless, some useful criteria for their estimate are suggested and applied.

The developed numerical algorithm has been carefully tested, with both measured noise signals and ad hoc numerically
generated ones. These tests allow evaluating the robustness and effectiveness of the method and providing interesting
information about the obtainable results. Furthermore, the method also allows to identify the noise generation mechanism
of non-rotating aerodynamic sources whose noise power spectra scale with the flow velocity.
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